Quantitative Measurement of Oxygen in Microgravity Combustion
نویسنده
چکیده
A low-gravity environment, in space or in ground-based facilities such as drop towers, provides a unique setting for studying combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as for better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Due to restrictions associated with performing measurements in reduced gravity, diagnostic methods which have been applied to microgravity combustion studies have generally been limited to capture of flame emissions on film or video, laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated diagnostic methods are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the models. When the demands of space flight are considered, the need for improved diagnostic systems which are rugged, compact, reliable, and operate at low power becomes apparent.
منابع مشابه
Experiments on Magnesium Aerosol Combustion in Microgravity
An experimental study of the combustion of an aerosol of coarse magnesium particles in microgravity is reported. Particles with sizes between 180–250 mm were aerosolized in a 0.5-L combustion chamber and ignited in a constant-pressure, microgravity environment. Two flame images were produced simultaneously using interference filters separating adjacent MgO and black body radiation bands at 500 ...
متن کاملDiode laser measurements of concentration and temperature in microgravity combustion
Diode laser absorption spectroscopy provides a direct method of determinating species concentration and local gas temperature in combustion flames. Under microgravity conditions, diode lasers are particularly suitable, given their compact size, low mass and low power requirements. The development of diode laser-based sensors for gas detection in microgravity is presented, detailing measurements...
متن کاملStudies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement
The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...
متن کاملEvaluation of the Extinction Factor in a Laminar Flame Established over a PMMA Plate in Microgravity
A methodology for estimating the extinction factor at λ = 530 nm in diffusion flames is presented. All experiments have been in microgravity and have as their objective the production of quantitative data that can serve to evaluate the soot volume fraction. A better understanding of soot formation and radiative heat transfer is of extreme importance to many practical combustion related processe...
متن کاملMicrogravity opposed-flow flame spread in polyvinyl chloride tubes
The effects of gravity on opposed-flow flame spread in a confined geometry were investigated experimentally in the 2.2-s drop tower at the NASA Glenn Research Center. Pure oxygen flowed through samples of 0.64-cminner-diameter polyvinyl chloride (PVC) tubing held either horizontally or vertically in a combustion chamber filled with nitrogen. The sample was ignited in normal gravity with a hot w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005